home *** CD-ROM | disk | FTP | other *** search
-
-
-
- ccccssssffffffffttttmmmm1111dddduuuu,,,,zzzzddddffffffffttttmmmm1111dddduuuu((((3333FFFF)))) ccccssssffffffffttttmmmm1111dddduuuu,,,,zzzzddddffffffffttttmmmm1111dddduuuu((((3333FFFF))))
-
-
-
- NNNNAAAAMMMMEEEE
- ccccssssffffffffttttmmmm1111dddduuuu,,,, zzzzddddffffffffttttmmmm1111dddduuuu ---- Multiple 1D, Complex to Real, Inverse Fast Fourier
- Transforms.
-
- SSSSYYYYNNNNOOOOPPPPSSSSYYYYSSSS
- _F_o_r_t_r_a_n :
- ssssuuuubbbbrrrroooouuuuttttiiiinnnneeee ccccssssffffffffttttmmmm1111dddduuuu(((( ssssiiiiggggnnnn,,,, nnnn,,,, pppp,,,, aaaarrrrrrrraaaayyyy,,,, iiiinnnncccc,,,, llllddddaaaa,,,, ccccooooeeeeffff ))))
- iiiinnnntttteeeeggggeeeerrrr ssssiiiiggggnnnn,,,, nnnn,,,, pppp,,,, iiiinnnncccc,,,, llllddddaaaa
- rrrreeeeaaaallll aaaarrrrrrrraaaayyyy((((llllddddaaaa,,,,pppp)))),,,, ccccooooeeeeffff((((nnnn++++11115555))))
-
- ssssuuuubbbbrrrroooouuuuttttiiiinnnneeee zzzzddddffffffffttttmmmm1111dddduuuu(((( ssssiiiiggggnnnn,,,, nnnn,,,, pppp,,,, aaaarrrrrrrraaaayyyy,,,, iiiinnnncccc,,,, llllddddaaaa,,,, ccccooooeeeeffff ))))
- iiiinnnntttteeeeggggeeeerrrr ssssiiiiggggnnnn,,,, nnnn,,,, pppp,,,, iiiinnnncccc,,,, llllddddaaaa
- rrrreeeeaaaallll****8888 aaaarrrrrrrraaaayyyy((((llllddddaaaa,,,,pppp)))),,,, ccccooooeeeeffff((((nnnn++++11115555))))
-
-
- _C :
- ####iiiinnnncccclllluuuuddddeeee <<<<fffffffftttt....hhhh>>>>
- iiiinnnntttt ccccssssffffffffttttmmmm1111dddduuuu (((( iiiinnnntttt ssssiiiiggggnnnn,,,, iiiinnnntttt nnnn,,,, iiiinnnntttt pppp,,,, ffffllllooooaaaatttt ****aaaarrrrrrrraaaayyyy,,,,
- iiiinnnntttt iiiinnnncccc,,,, iiiinnnntttt llllddddaaaa,,,, ffffllllooooaaaatttt ****ccccooooeeeeffff))));;;;
- iiiinnnntttt zzzzddddffffffffttttmmmm1111dddduuuu (((( iiiinnnntttt ssssiiiiggggnnnn,,,, iiiinnnntttt nnnn,,,, iiiinnnntttt pppp,,,, ddddoooouuuubbbblllleeee ****aaaarrrrrrrraaaayyyy,,,,
- iiiinnnntttt iiiinnnncccc,,,, iiiinnnntttt llllddddaaaa,,,, ddddoooouuuubbbblllleeee ****ccccooooeeeeffff))));;;;
-
-
- DDDDEEEESSSSCCCCRRRRIIIIPPPPTTTTIIIIOOOONNNN
- ccccssssffffffffttttmmmm1111dddduuuu and zzzzddddffffffffttttmmmm1111dddduuuu compute the P real sequences of N samples each,
- from their Fourier transform. The i-th index f(i) of a sequence of N
- samples, with Fourier transform F(k) is equal to:
- f(i) = Sum ( W^(i*k) * F(k) ), for k =0, ..., (N-1)
- W = exp( (Sign*2*sqrt(-1)*PI) / N )
-
-
- The Inverse Fourier transforms are performed in-place, so the input
- Fourier transform is overwritten by the final sequence output. As the
- output sequences have real values, only the first half of the transform
- is needed. The (N-k)-th sample of the transform would be the conjugate of
- the k-th sample.
-
- However, some extra space is necessary. For an N sample output sequence,
- the input complex transform takes ((N+2)/2) complex values. This
- represents either N+1(odd case) or N+2(even case) real values, that's one
- or two more real values than the output real sequence.
-
-
- PPPPAAAARRRRAAAAMMMMEEEETTTTEEEERRRRSSSS
- SSSSIIIIGGGGNNNN Integer specifying which sign to be used for the expression of W
- (see above) - must be either +1 or -1. Unchanged on exit.
-
- NNNN Integer, the number of samples in each sequence. Unchanged on exit.
-
- PPPP Integer, the number of sequences. Unchanged on exit.
-
-
-
-
-
- PPPPaaaaggggeeee 1111
-
-
-
-
-
-
- ccccssssffffffffttttmmmm1111dddduuuu,,,,zzzzddddffffffffttttmmmm1111dddduuuu((((3333FFFF)))) ccccssssffffffffttttmmmm1111dddduuuu,,,,zzzzddddffffffffttttmmmm1111dddduuuu((((3333FFFF))))
-
-
-
- AAAARRRRRRRRAAAAYYYY Array containing the samples of the sequence to be transformed.
- On input, the element "i" of the sequence "j" is stored as A(i*inc,j) in
- _F_o_r_t_r_a_n , and A[i*inc+j*lda] in _C.
- On exit, the array is overwritten by its transform.
-
- IIIINNNNCCCC Integer, increment between two consecutive elements of a sequence.
- Unchanged on exit.
-
- LLLLDDDDAAAA Integer, leading dimension: increment between the first samples of
- two consecutive sequences. Unchanged on exit.
-
- CCCCOOOOEEEEFFFFFFFF Array of at least ( N + 15 ) elements. On entry it contains the
- Sines/Cosines and factorization of N. COEFF needs to be initialized with
- a call to scfftm1dui or dzfftm1dui. Unchanged on exit.
-
-
- EEEExxxxaaaammmmpppplllleeee ooooffff CCCCaaaalllllllliiiinnnngggg SSSSeeeeqqqquuuueeeennnncccceeee
- Working on 64 sequences of 1024 real values each. We successively apply
- a Direct Fourier Transform, an Inverse Fourier Trasnform and finally
- scale back the result by a factor 1/N (1/1024.)-
- This sequence DirectFFT-InverseFFT-Scaling is equivalent to the identity
- operator and the final sequence should be equal (with round-off
- precision) to the initial sequence.
- Elements of each sequence are stored with increment (stride) 1, and the
- offset between the first element of two succesive sequence (leading
- dimension) is 1026 (1026 >= 1024+2).
- _F_o_r_t_r_a_n
- real array(0:1026-1,0:64-1), coeff(1024+15)
- call scfftm1dui( 1024, coeff)
- call csfftm1du( -1, 1024, 64, array, 1, 1026, coeff)
- call scfftm1du( 1, 1024, 64, array, 1, 1026, coeff)
- call sscalm1d( 1024,64,(1./real(1024)),array,1,1026)
-
- _C
- #include <fft.h>
- float array[64*1026], *coeff;
- coeff = scfftm1dui( 1024, NULL);
- csfftm1du( -1, 1024, 64, array, 1, 1026, coeff);
- scfftm1du( 1, 1024, 64, array, 1, 1026, coeff);
- sscalm1d( 1024, 64, 1./(float)1024, array, 1, 1026);
-
- NNNNOOOOTTTTEEEE____1111 :::: The Direct and Inverse transforms should use opposite signs -
- Which one is used (+1 or -1) for Direct transform is just a matter of
- convention-
-
- NNNNOOOOTTTTEEEE____2222 :::: The Fourier Transforms are not normalized so the succession
- Direct-Inverse transform scales the input data by a factor equal to the
- size of the transform.
-
-
-
-
-
-
-
- PPPPaaaaggggeeee 2222
-
-
-
-
-
-
- ccccssssffffffffttttmmmm1111dddduuuu,,,,zzzzddddffffffffttttmmmm1111dddduuuu((((3333FFFF)))) ccccssssffffffffttttmmmm1111dddduuuu,,,,zzzzddddffffffffttttmmmm1111dddduuuu((((3333FFFF))))
-
-
-
- SEE ALSO
- fft, scfftm1dui, dzfftm1dui, scfftm1du, dzfftm1du, sscalm1d, dscalm1d
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- PPPPaaaaggggeeee 3333
-
-
-
-